6. Orthogonality and Least-Squares

6.1 Inner product, length, and orthogonality

Definition

The inner product of two vector \(\mathbf{u} \) and \(\mathbf{v} \) in \(\mathbb{R}^n \) is written \(\mathbf{u} \cdot \mathbf{v} \).

If \(\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \), \(\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \), then \(\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n \).

Theorem 1

(a) \(\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} \)

(b) \((\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w} \)

(c) \((c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (c\mathbf{v}) \)

(d) \(\mathbf{u} \cdot \mathbf{u} \geq 0 \), and \(\mathbf{u} \cdot \mathbf{u} = 0 \iff \mathbf{u} = \mathbf{0} \).
Definition
The length (or norm) of \mathbf{v} is the non-negative scalar $||\mathbf{v}||$ defined by
$$||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{v_1^2 + \cdots + v_n^2} \text{ and } ||\mathbf{v}||^2 = \mathbf{v} \cdot \mathbf{v}.$$

Note: $||c\mathbf{v}|| = |c||\mathbf{v}||$.

Definition
The distance between \mathbf{u} and \mathbf{v}, written as $\text{dist}(\mathbf{u}, \mathbf{v})$, is the length of the vector $\mathbf{u} - \mathbf{v}$. That is, $\text{dist}(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||$.

Orthogonal vectors

Definition
Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

Theorem 2 (The Pythagorean Theorem, 畢氏定理)
Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.

$$(L \cos \theta)^2 + (L \sin \theta)^2 = L^2$$
Orthogonal complements

Definition
The set of all vectors u that are orthogonal to every vector w in W, then we say that the set is the orthogonal complement of W, and denote by W^\perp. (next page)

Note
1. A vector x is in W^\perp if and only if x is orthogonal to every vector in a set that spans subspace W.
2. W^\perp is a subspace of R^n for any subset W of R^n.
3. Zero vector is orthogonal to any vector.

Theorem 3
Let A be an $m \times n$ matrix. Then

\begin{align*}
(i) \quad & (\text{Row } A)^\perp = \text{Nul } A. \quad \{\mathbf{x} \mid A^T \mathbf{x} = 0\} \equiv \{\mathbf{x} \mid \mathbf{x}^T A = 0\} \equiv \\
(ii) \quad & (\text{Col } A)^\perp = \text{Nul } A^T. \quad \text{left null space of } A)
\end{align*}

\[W^\perp = \{ x \mid x \in R^n, x \perp w_i's \} \]
\(W \perp \) is a subspace of \(R^n \) for any subset \(W \) of \(R^n \).

If \(w \) is an arbitrary vector in \(W \), then
1. \(0 \in W \perp \)
2. If \(u \in W \perp \),
 then \(cu \cdot w = c (u \cdot w) = 0 \); thus \(cu \in W \perp \)
3. If \(u \) and \(v \in W \perp \),
 then \((u+v) \cdot w = u \cdot w + v \cdot w = 0 \);
 thus \((u+v) \in W \perp \)

\(W \) is a subset of \(R^n \), then \((W \perp) \perp = W \) ?
If \(W \) is a subspace of \(R^n \), then \((W \perp) \perp = W \) ?

Exercises of Section 6.1.

6.2 Orthogonal sets

A set of vectors \(\{u_1, \ldots, u_n\} \) in \(R^n \) is said to be an orthogonal set if \(u_i \cdot u_j = 0 \) for all \(i \neq j \).

Theorem 4
If \(S = \{u_1, \ldots, u_p\} \) is an orthogonal set of nonzero vectors in \(R^n \), then \(S \) is linearly independent and hence is a basis for the subspace spanned by \(S \).

An orthogonal basis for a subspace \(W \) of \(R^n \) is a basis for \(W \) that is also an orthogonal set.
Theorem 5

Let \{u_1, \ldots, u_p\} be an orthogonal basis for a subspace \(W\) of \(\mathbb{R}^n\). Then each \(y\) in \(W\) has a unique representation as a linear combination of \(u_1, \ldots, u_p\). In fact, if
\[
y = c_1 u_1 + \ldots + c_p u_p
\]
then
\[
c_j = \frac{y \cdot u_j}{u_j \cdot u_j}, \quad j = 1, 2, \ldots, p.
\]

Note

1. \(y_j = c_j u_j = \frac{y \cdot u_j}{u_j \cdot u_j} u_j\) is the orthogonal projection of \(y\) onto \(u_j\).
2. \(y - y_j = y - \frac{y \cdot u_j}{u_j \cdot u_j} u_j\) is component of \(y\) orthogonal to \(u_j\).

A set \(\{u_1, \ldots, u_p\}\) is an orthonormal set if it is an orthogonal set of unit vectors.

Normalize the length of vector \(u = [u_1 \ldots u_n]^T\) to \(u'\)
\[
u' = \frac{1}{\sqrt{u_1^2 + \ldots + u_n^2}} [u_1 \ldots u_n]^T.
\]

Theorem 6

An \(m \times n\) matrix \(U\) has orthonormal columns if and only if \(U^T U = I\).

Proof.
\[
U^T U = \begin{bmatrix} u_1^T \\ \vdots \\ u_n^T \end{bmatrix} [u_1 \ldots u_n] = \begin{bmatrix} u_1^T u_1 & \ldots & u_1^T u_n \\ \vdots & \ddots & \vdots \\ u_n^T u_1 & \ldots & u_n^T u_n \end{bmatrix}.
\]
Theorem 7

Let \(U \) be an \(m \times n \) matrix with orthonormal columns, and let \(x \) and \(y \) be in \(\mathbb{R}^n \). Then

(a) \(\|Ux\| = \|x\| \) (preserving length)
(b) \((Ux) \cdot (Uy) = x \cdot y \) (preserving orthogonality)
(c) \((Ux) \cdot (Uy) = 0 \) if and only if \(x \cdot y = 0 \)

Proof.

(a) \(Ux = [u_1 \ u_2 \ \ldots \ u_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 u_1 + x_2 u_2 + \ldots + x_n u_n \)

\[
\|Ux\| = \sqrt{(Ux) \cdot (Ux)} = \sqrt{(x_1 u_1 + \ldots + x_n u_n) \cdot (x_1 u_1 + \ldots + x_n u_n)}
\]
\[
= \sqrt{x_1 u_1 \cdot (x_1 u_1 + \ldots + x_n u_n) + \ldots + x_n u_n \cdot (x_1 u_1 + \ldots + x_n u_n)}
\]
\[
= \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} = \sqrt{x \cdot x} = \|x\|.
\]

(b) \((Ux) \cdot (Uy) \)
\[
= (x_1 u_1 + \ldots + x_n u_n) \cdot (y_1 u_1 + \ldots + y_n u_n)
\]
\[
= x_1 y_1 + x_2 y_2 + \ldots + x_n y_n
\]

Exercises of Section 6.2.
6.3 Orthogonal projections

Purpose
To find the projection of a vector on a subspace.

Theorem 8 (The Orthogonal Decomposition Theorem)
Let W be a subspace of \mathbb{R}^n. Then each y in \mathbb{R}^n can be written uniquely in the form $y = \hat{y} + z$, where \hat{y} is in W and z is in W^\perp. In fact, if $\{u_1, \ldots, u_p\}$ is any orthogonal basis of W, then

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \cdots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p$$

and $z = y - \hat{y}$.

The vector \hat{y} in Eq.(1) is called the orthogonal projection of y onto W and is often written as $\text{proj}_W y$.

For example,
The orthogonal projection of y onto W.

Ex.2.
Let $u_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$, and $y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Observe that $\{u_1, u_2\}$ is an orthogonal basis for $W = \text{Span} \{u_1, u_2\}$. Write y as the sum of vector in W and vector orthogonal to W.
Solution.
The orthogonal projection of y onto W is
\[
\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2
\]
\[
= \frac{9}{30} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \frac{9}{30} \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix} + \frac{15}{30} \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{30} \begin{bmatrix} 60 \\ 6 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix}
\]
So
\[
y - \hat{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}
\]
The desired decomposition of y is
\[
y = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} + \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}
\]

Properties of orthogonal projections

- If $\{u_1, u_2, \ldots, u_p\}$ is an orthogonal basis for W and
 if y is in $W = \text{Span}\{u_1, u_2, \ldots, u_p\}$, then $\text{proj}_W y = y$.

Theorem 9 (The Best approximation theorem)

Let W be a subspace of \mathbb{R}^n, y be any vector in \mathbb{R}^n, and \hat{y} be the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that
\[
\|y - \hat{y}\| < \|y - v\|
\]
for all v in W distinct from \hat{y}.

![Diagram of orthogonal projection](image)
Ex. 4. The distance from a point y in \mathbb{R}^n to a subspace W is defined as the distance from y to the nearest point in W. Find the distance from y to

$$W = \text{Span} \{ u_1, u_2 \}, \quad \text{where} \quad y = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \quad u_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}.$$

Solution.

By the best approximation theorem, the distance from y to W is $\|y - \hat{y}\|$, where $\hat{y} = \text{proj}_W y$. Since $\{ u_1, u_2 \}$ is orthogonal basis for W,

$$\hat{y} = \frac{15}{30} u_1 + \frac{-21}{6} u_2 = \frac{1}{2} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}.$$

$$y - \hat{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix} - \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$$

$$\|y - \hat{y}\|^2 = 3^2 + 6^2 = 45. \text{ The distance from } y \text{ to } W \text{ is } \sqrt{45} = 3\sqrt{5}.$$

Theorem 10

If $\{ u_1, \ldots, u_p \}$ is an orthonormal basis for a subspace W of \mathbb{R}^n, then

$$\text{proj}_W y = (y \cdot u_1) u_1 + (y \cdot u_2) u_2 + \ldots + (y \cdot u_p) u_p \quad (4)$$

If $U = [u_1 \ u_2 \ \ldots \ u_p]$, then

$$\text{proj}_W y = U U^T y \quad \text{for all } y \in \mathbb{R}^n. \quad (5)$$

Proof.

$$\text{proj}_W y = (y \cdot u_1) u_1 + (y \cdot u_2) u_2 + \ldots + (y \cdot u_p) u_p = U \begin{bmatrix} y \cdot u_1 \\ y \cdot u_2 \\ \vdots \\ y \cdot u_p \end{bmatrix}$$

Since $y \cdot u_i = u_i \cdot y = u_i^T y$

$$\text{proj}_W y = U \begin{bmatrix} u_1^T y \\ u_2^T y \\ \vdots \\ u_p^T y \end{bmatrix} = U (U^T y) = U U^T y$$

Exercises of Section 6.3.
6.4 The Gram-Schmidt process

- **Purpose**
 The Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormal basis for nonzero subspace of \mathbb{R}^n.

- **Theorem 11 (The Gram-Schmidt process)**
 Let a basis $\{x_1, \ldots, x_p\}$ for a subspace W of \mathbb{R}^n, define $v_1 = x_1$, $v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1$, $v_3 = x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2$, ..., $v_p = x_p - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1}$.

 Then $\{v_1, \ldots, v_p\}$ is an orthogonal basis for W. In addition, $\text{Span} \{v_1, \ldots, v_k\} = \text{Span} \{x_1, \ldots, x_k\}$ for $1 \leq k \leq p$.

- **The geometric meaning of the Gram-Schmidt process**
 (A three-dimensional case)

 Note that the angle between x_i and v_i is less than 90°.

 $$Q^T A = \begin{bmatrix} -v_1 & -v_2 & -v_3 \\ \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$
Proof.

\[x_2 = \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{x_2 \cdot v_2}{v_2 \cdot v_2} v_2 \]

\[\Rightarrow \frac{x_2 \cdot v_2}{v_2 \cdot v_2} v_2 = x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1. \]

Orthonormal bases

- An orthonormal basis is constructed easily from an orthogonal basis \(\{ v_1, \ldots, v_p \} \); simply normalize all \(v_k \) by \(v_k / \| v_k \| \rightarrow v_k \).

QR factorization of matrices

- This factorization is widely used in computer algorithm for various computations, such as solving equations and finding eigenvalues. (Exercise 23 of Section 5.2.)

Theorem 12 *(The QR factorization)*

If \(A \) is an \(m \times n \) matrix with linearly independent columns, then \(A \) can be factored as \(A = QR \), where \(Q \) is an \(m \times n \) matrix whose columns form an orthonormal basis for \(\text{Col} \ A \) and \(R \) is an \(n \times n \) upper triangular invertible matrix with positive entries on its diagonal.

Ex. 4.

Factor \(A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \) into \(QR \).

Answer.

(a) Find \(Q \).

\[\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \]

orthogonalize to

\[\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -2/\sqrt{6} \\ 1/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix} \]
(b) To find R.

Since $A = QR$ and $Q^TQ = I$ (Theorem 6 of page 10)

$\Rightarrow Q^T A = Q^T Q R \Rightarrow Q^T A = R$.

$\Rightarrow R = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
-\frac{3}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} \\
0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 0 & 2
\end{bmatrix} = \begin{bmatrix}
2 & \frac{3}{\sqrt{12}} & 1 \\
0 & \frac{3}{\sqrt{12}} & 2 & \frac{\sqrt{12}}{2} \\
0 & 0 & 2 & \frac{\sqrt{6}}{2}
\end{bmatrix}$.

Exercises of Section 6.4.

Problem \[A = QR \text{ and } Q^T Q = I \]

$\Rightarrow Q^T A = Q^T Q R \Rightarrow Q^T A = R$

$\Rightarrow Q Q^T A = Q R = A$

$\Rightarrow Q Q^T = I$?

No!

$Q = \begin{bmatrix}
\frac{1}{2} & \frac{3}{\sqrt{12}} & 0 \\
\frac{1}{2} & \frac{1}{\sqrt{12}} & -\frac{2}{\sqrt{6}} \\
\frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{6}} \\
\frac{1}{2} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{6}}
\end{bmatrix} \Rightarrow Q Q^T = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1/2 & 1/2 \\
0 & 0 & 1/2 & 1/2
\end{bmatrix}$

$\Rightarrow Q Q^T A = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1/2 & 1/2 \\
0 & 0 & 1/2 & 1/2
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix} = A.$
6.5 Least-squares problems

For a linear system, $Ax = b$, a solution is demanded but none exists. The best one can do is to find an x that makes Ax as close as possible to b. The general least-squares problem is just to find an x that makes $\|b - Ax\|$ as small as possible. The term least-squares arises from the fact that $\|b - Ax\|$ is the square root of a sum of squares.

Definition

If A is an $m \times n$ matrix and b is in \mathbb{R}^m, a least-squares solution of $Ax = b$ is an \hat{x} in \mathbb{R}^n such that

$$\|b - A\hat{x}\| \leq \|b - Ax\| \text{ for all } x \text{ in } \mathbb{R}^n.$$

Theorem 9 on page 16

Note

No matter that x is selected, the vector Ax will necessarily be in the column space $\text{Col} \ A$. So we seek an x that makes Ax the closest point in $\text{Col} \ A$ to b.

If \hat{b} is the orthogonal projection of b on $\text{Col} \ A$, then $A\hat{x} = \hat{b}$.

It means that $Ax = \hat{b}$ is consistent and there is a solution \hat{x} in \mathbb{R}^n. By the orthogonal decomposition principle, the projection \hat{b} has the property that $b - \hat{b}$ is orthogonal to $\text{Col} \ A$, so $b - A\hat{x}$ is orthogonal to each column of A. If a_j is any column of A, then a_j is orthogonal to $(b - A\hat{x})$ and

$$a_j^T(b - A\hat{x}) = 0.$$

Since each a_j^T is a row of A^T,

$$A^T(b - A\hat{x}) = 0 \implies A^T b - A^T A \hat{x} = 0 \implies A^T A \hat{x} = A^T b.$$
1. **Theorem 13**
 The set of least-squares solutions of \(Ax = b \) coincides with the nonempty set of solutions of the normal equations \(A^T A \hat{x} = A^T b \). If \(A^T A \) is invertible, then \(\hat{x} = (A^T A)^{-1} A^T b \).

2. **Ex. 1.**
 Find a least-squares solution of the inconsistent system
 \[
 Ax = b \quad \text{for} \quad A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}.
 \]

 Solution. \(\hat{x} = \left(\begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 4 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 5 & -1 & 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} \]
 \[
 = \frac{1}{84} \begin{bmatrix} 84 \\ 168 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.
 \]

3. **Ex. 2.** Find a least-squares solution of \(Ax = b \) for

 \[
 A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix},
 \]
 where \(A^T A \) is not invertible.

 Solution. \(A^T A \hat{x} = A^T b \) \(\Rightarrow \)

 \[
 \begin{bmatrix} 6 & 2 & 2 & 2 \\ 2 & 2 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 2 \\ 6 \end{bmatrix}
 \]

 The augmented matrix
 \[
 \begin{bmatrix} 6 & 2 & 2 & 2 & 4 \\ 2 & 2 & 0 & 0 & -4 \\ 2 & 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 2 & 0 \end{bmatrix} \rightarrow ... \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & -1 & -5 \\ 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
 \]

 \(\Rightarrow \)

 \[
 \begin{bmatrix} x_1 \\ x_2 - x_4 = 3 \\ x_3 - x_4 = -5 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 \\ -5 + x_4 \\ -2 + x_4 \\ x_4 \end{bmatrix} = \begin{bmatrix} 3 \\ -5 \\ -2 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}.
 \]
Theorem 14
The matrix A^TA is invertible if and only if the columns of A are linearly independent. In this case, the equation $Ax = b$ has only one least-squares solution \hat{x}, and it is given by $\hat{x} = (A^TA)^{-1}A^Tb$.

Note
The distance from b to $A\hat{x}$ is called the least-squares error.

Alternative calculations of least-square solutions

Meaning
In some cases, the normal equations for a least-squares problem can be ill-conditioned; that is, small errors in the calculations of the entries of A^TA can sometimes cause relatively large errors in the solution \hat{x}. If the columns of A are linearly independent, the least-squares solution can often be computed more reliably through a QR factorization of A.

ill-conditioned
The condition number associated with the linear equation $Ax = b$ gives a bound on how inaccurate the solution x will be after approximate solution.

Conditioning is a property of the matrix, not the algorithm or floating point accuracy of the computer used to solve the corresponding system.

The rate at which the solution x will change with respect to a change in b. Thus, if the condition number is large, even a small error in b may cause a large error in x.
The condition number is the maximum ratio of the relative error in x divided by the relative error in b,

$$\frac{\|A^{-1}e\|}{\|A^{-1}b\|} = \|A\|\|A^{-1}\|,$$

where $\|x\|$ is 2 norm.

* For example,

$$\begin{bmatrix} 1 & 1 \\ 1 & 1.001 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1.001 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 2.001 \end{bmatrix} \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

where condition number is

$$\begin{bmatrix} 1 & 1 \\ 1 & 1.001 \end{bmatrix} \begin{bmatrix} 1001 & -1000 \\ -1000 & 1000 \end{bmatrix} = \sqrt{4.002001^2 + 4002001} = 4002$$

* The larger condition number is, the more ill conditioned the coefficient matrix is.

Theorem 15

Given an $m \times n$ matrix A with linearly independent columns, let $A = QR$ be a QR factorization of A. Then for each b in \mathbb{R}^m, the equation $Ax = b$ has a unique least-squares solution,

$$\hat{x} = R^{-1}Q^Tb.$$

Proof.

$$\hat{x} = (A^TA)^{-1}A^Tb \quad \text{since} \quad A = QR$$

$$= (R^TQ^TQR)^{-1}R^TQ^Tb$$

$$= (R^TIR)^{-1}R^TQ^Tb$$

$$= (R^TR)^{-1}R^TQ^Tb$$

$$= R^{-1}(R^T)^{-1}R^TQ^Tb$$

$$= R^{-1}Q^Tb.$$
Note

Since R is an upper triangular matrix, \hat{X} should be calculated from the equation

$$R \hat{X} = Q^T b.$$

It is much faster to solve this equation by back-substitution or row operations than to compute R^{-1} and use the preceding equation.

Ex.5.

Find the least-squares solution of $Ax = b$ for

$$A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix}.$$

Solution.

$$A = QR = \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & -1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}.$$

$$R\hat{X} = Q^T b = \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}.$$

$$\Rightarrow \hat{X} = \begin{bmatrix} 10 \\ -6 \\ 2 \end{bmatrix}.$$

Exercises for Section 6.5.